PYTHAGORAS AND TRIGONOMETRY Geometry and Measures

APPLIED GRAPHS

Algebra

Gradient - The extra cost incurred for every extra hour. y-intercept - The minimum payment to the plumber.

Maths

Key Words

 Conversion graph: A graph which converts between two variables.Intercept: Where two graphs cross.
y-intercept: Where a graph crosses the y axis.
Gradient: The rate of change of one variable with respect to another. This can be seen by the steepness. Simultaneous: At the same time.

Tip

The solution to two linear equations with two unknowns is the coordinates of the intercept (where they cross).

Examples

What is the minimum taxi fair? $£ 2$, this is the y intercept.

What is the charge per mile? 50p, every extra mile adds on 50p.

How much would a journey of 5 miles cost? $£ 4.50$, See line drawn up from 5 miles to the graph, then drawn across to find the cost.

Questions

1) For the graph above a) A journey is 8 miles, what is its cost?
b) A journey cost just $£ 3$, how far was the journey?
2) Draw a graph to show the exchange rate $£ 1=\$ 1.4$.

DISTANCE-TIME GRAPHS

Algebra

Key Concepts

A distance-time graph plots time against the distance away from a starting point.

Speed can be calculated from these graphs by finding the gradient of the graph.

Horizontal lines are sections where the object is stationary.

Horizontal sections are where the object is stationary

Diagonal lines show the object moving away from home or moving closer to home

Examples

$$
\begin{gathered}
\text { Speed }=\frac{\text { distance }}{\text { time }} \\
\text { Speed }=\frac{21}{1}
\end{gathered}
$$

$$
\text { Speed }=21 \mathrm{~km} / \mathrm{h}
$$

Key Words Distance Time Speed Gradient Stationary

A distance-time graph shows the journey of someone from home to the shop and back again.

1) How long were they at the shop for?
2) How far away from home is the shop?
3) How far did they travel in total?
4) What speed did they travel on the way to the shop in km / h ?

EQUATION OF A LINE BETWEEN TWO POINTS

Algebra

Key Concepts

Equation of a line is usually seen in the format:

$$
y=m x+c
$$

$m=$ gradient $c=y$-intercept

Examples

Find the equation of the line between the coordinates $(1,1)$ and $(3,5)$.

I have chosen to substitute in $(3,5)$.

$$
\begin{array}{cc}
y=m x+c & 5=(2 \times 3)+c \\
m=\frac{5-1}{3-1}=\frac{4}{2}=2 & -1=c \\
y=2 x+c & y=2 x-1
\end{array}
$$

Substitute in one of the coordinates to find c

MathsWatch

159b

Key Words Gradient Intercept Equation

1) Find the equation of the line between the coordinates $(2,5)$ and $(5,11)$.
2) Find the equation of the line between the coordinates $(5,3)$ and $(7,11)$.

EXPAND AND SIMPLIFY BRACKETS Algebra

Key Concepts

Expanding brackets

Single: Where each term inside the bracket is multiplied by the term on the outside of the bracket.
Double: Where each term in the first bracket is multiplied by all terms in the second bracket.

Factorising expressions

Putting an expression back into brackets. To "factorise fully" means take out the HCF.

Difference of two squares

When two brackets are repeated with the exception of a sign change. All numbers in the original expression will be square numbers.

Examples

Linear expressions

Expand and simplify where appropriate

1) $7(3+a)=21+7 a$
2) $2(5+a)+3(2+a)=10+2 a+6+3 a$
$=5 a+16$
3) Factorise $9 x+18=9(x+2)$
4) Factorise $6 e^{2}-3 e=3 e(2 e-1)$

Quadratic expressions

Expand and simplify:
1)

$$
\begin{aligned}
& (p+2)(2 p-1) \\
= & 2 p^{2}+4 p-p-2 \\
= & 2 p^{2}+3 p-2
\end{aligned}
$$

2) $(p+2)^{2}$

$$
=p^{2}+2 p+2 p+4
$$

$$
=p^{2}+4 p+4
$$

Factorise:
3) $x^{2}-2 x-3$

$$
=(x-3)(x+1)
$$

Factorise and solve:
4) $x^{2}+4 x-5=0$

$$
(x-1)(x+5)=0
$$

Therefore the solutions are:
Either $x-1=0$

$$
x=1
$$

Or $x+5=0$

$$
x=-5
$$

Key Words

Expand
Factorise
Simplify
Product Solve

1) Expand and simplify (a) 3(2-7f)

(b) $5(m-2)+6$
(c) $3(4+t)+2(5+t)$
2) Factorise
(a) $6 m+12 t$
(b) $9 t-3 p$
(c) $4 d^{2}-2 d$
3) Expand $(5 g-4)(2 g+1)$
4) (a) Factorise $x^{2}-8 x+15$
(b) Factorise and solve $x^{2}+7 x+10=0$

$$
\mathrm{s}-=x \wedge 0 \mathrm{z}^{-}=x(\mathrm{q})(\mathrm{s}-x)(\varepsilon-x)(\mathrm{e})(\mathrm{t}
$$

$$
\downarrow-\Omega^{\circ} \varepsilon-r^{\circ} 0 \tau(\varepsilon
$$

EXPRESSIONS/EQUATIONS/IDENTITIES AND SUBSTITUTION Algebra

Key Concepts

A formula involves two or more letters, where one letter equals an expression of other letters.

An expression is a sentence in algebra that does NOT have an equals sign.

An identity is where one side is the equivalent to the other side.

When substituting a number into an expression, replace the letter with the given value.

Examples

1) $5(y+6) \equiv 5 y+30$ is an identity as when the brackets are expanded we get the answer on the right hand side
2) $5 m-7$ is an expression since there is no equals sign
3) $3 x-6=12$ is an equation as it can be solved to give a solution
4) $\mathrm{C}=\frac{5(F-32)}{9}$ is a formula (involves more than one letter and includes an equal sign)
5) Find the value of $3 x+2$ when $x=5$

$$
(3 \times 5)+2=17
$$

6) Where $A=b^{2}+c$, find A when $b=2$ and $c=3$

$$
\begin{aligned}
& A=2^{2}+3 \\
& A=4+3 \\
& A=7
\end{aligned}
$$

Questions

Maths

95

Key Words

Substitute
Equation
Formula Identity Expression

1) Identify the equation, expression, identity, formula from
the list (a) $v=u+a t$
(b) $u^{2}-2 a s$
(c) $4 x(x-2)=x^{2}-8 x$
(d) $5 \mathrm{~b}-2=13$
2) Find the value of $5 x-7$ when $x=3$
3) Where $A=d^{2}+e$, find A when $d=5$ and $e=2$
uo!łenbə (p)
кт!?иәр! (э)
uo!ssardxə (q)
efnuxof (e) (\mathfrak{I} :Sy $\exists M S N \forall$

PLOTTING AND INTERPRETING GRAPHS

Algebra

Key Concept

Substitution - This is where you replace a number with a letter

If $a=5$ and $b=2$	
$a+b=$	$5+2=7$
$a-b=$	$5-2=3$
$3 a=$	$3 \times 5=15$
$a b=$	$5 \times 2=10$
$a^{2}=$	$5^{2}=25$

95, 96, 97, 159a

Key Words

Intercept: Where two graphs cross.
Gradient: This describes the steepness of the line. y-intercept: Where the graph crosses the y axis.
Linear: A linear graph is a straight line. Quadratic: A quadratic graph is curved, u or n shape.

Examples

$$
\begin{array}{ll}
A: y=2 & B: x=1 \\
C: y=-3 & D: y=x
\end{array}
$$

Draw the graph of $y=2 x-1$

X	-2	-1	0	1	2
Y	-5	-3	-1	1	3

Notice this graph has a gradient of 2 and a y-intercept of -1 .

Parallel lines have the same gradient.

Questions

1) What are the gradient and y-intercept of:
a) $y=4 x-3$
b) $y=4+6 x$
c) $y=-5 x-3$
2) Draw the graph of $y=3 x-2$ for x values from -3 to 3 using a table.

REARRANGE AND SOLVE EQUATIONS
 Algebra

Key Concepts

Solving equations:
Working with inverse operations to find the value of a variable.

Rearranging an equation:
Working with inverse operations to isolate a highlighted variable.

In solving and rearranging we undo the operations starting from the last one.

Solve:

For each step in solving an equation we must do the inverse operation

Solve:

$$
\begin{array}{ccc}
& 12=3 x-18 \\
+18 & & +18 \\
& 30=3 x & \\
\div 3 & & \div 3 \\
& x=10 &
\end{array}
$$

Examples

Rearrange to make r the subject of the formulae :

$$
\begin{array}{ccc}
& Q=\frac{2 r-7}{3} \\
\times 3 & & \\
& 3 Q=2 r-7 \\
+7 & & +7 \\
& 3 Q+7=2 r & \\
\div 2 & & \div 2 \\
& \frac{3 Q+7}{2}=r
\end{array}
$$

100, 135a, 135b

Key Words Solve
Rearrange
Term
Inverse
operation

1) Solve $7(x+2)=35$
2) Solve $4 x-12=28$
3) Solve $4 x-12=2 x+20$
4) Rearrange to make x the subject:
$y=\frac{3 x+4}{2}$

$$
\frac{\varepsilon}{\hbar-\kappa z}=x \text { (} \quad 9 \mathrm{I}=x \quad \text { (} \varepsilon \quad 0 \mathrm{~L}=x \quad(乙 \quad \varepsilon=x \quad(\mathrm{I}: \text { Sy } \exists \mathrm{MSN} \forall
$$

REARRANGING EQUATIONS

Algebra

Key Concepts

Rearranging an equation:
Working with inverse operations to isolate a highlighted variable.

When rearranging we undo the operations starting from the last one.

Rearrange to make r the subject of the formulae :

$$
\begin{array}{ccc}
& Q=\frac{2 r-7}{3} \\
\times 3 & & \\
& 3 Q=2 r-7 \\
+7 & & +7 \\
& 3 Q+7=2 r \\
\div 2 & & \\
& \frac{3 Q+7}{2}=r
\end{array}
$$

Examples

Rearrange to make c the subject of the formulae :

$$
\begin{aligned}
& 2(3 a-c)=5 c+1 \\
& \text { expand } \\
& \quad 6 a-2 c=5 c+1 \\
& +2 c \quad 6 \mathrm{a}=7 c+1 \\
& -1 \quad 6 \mathrm{a}-1=7 c \\
& \div 7 \quad-1 \\
& \\
& \quad \frac{6 a-1}{7}=c
\end{aligned}
$$

Rearrange to make a the subject of the formulae :

$$
\sqrt{\frac{a c}{b}}=d
$$

square

$$
\frac{a c}{b}=d^{2}
$$

$$
\times b
$$

$$
a c=b d^{2}
$$

$$
a=\frac{b d^{2}}{c}
$$

MathsWatch

136, 190

1) Rearrange to make a the subject $r=\frac{5 a+3}{t}$

Key Words
Rearrange
Term Inverse
2) Rearrange to make m the subject $2(2 p+m)=3-5 m$
3) Rearrange to make x the subject $\sqrt{\frac{4 x}{y}}=z$

SEQUENCES

Algebra

Key Concepts

Arithmetic or linear sequences
increase or decrease by a common amount each time.
Geometric series has a common multiple between each term.
Quadratic sequences
include an n^{2}. It has a common second difference.
Fibonacci sequences are where you add the two previous terms to find the next term.

Linear/arithmetic sequence:

a) State the nth term

$$
3 n+\frac{1}{x}
$$

Difference The $0^{\text {th }}$ term
b) What is the $100^{\text {th }}$ term in the sequence?

$$
\begin{gathered}
3 n+1 \\
3 \times 100+1=301
\end{gathered}
$$

c) Is 100 in this sequence?

$$
\begin{gathered}
3 n+1=100 \\
3 n=99 \\
n=33
\end{gathered}
$$

Yes as 33 is an integer.

Pattern 1 Pattern $2 \quad$ Pattern 3

Examples

Linear sequences with a picture:

State the nth term.

Hint: Firstly write down the number of matchsticks in each image:

$$
7 n+1
$$

$+1$| Pattern 1 | Pattern 2 | Pattern 3 |
| :---: | :---: | :---: |
| 8 | 15 | 22 |

Geometric sequence e.g.

Quadratic sequence e.g. $n^{2}+4$ Find the first 3 numbers in the sequence First term: $1^{2}+4=5$

Third term: $3^{2}+4=13$
Second term: $2^{2}+4=8$

Key Words Linear Arithmetic
102, 103, 104

1) $1,8,15,22, \ldots$.
a) Find the nth term
b) Calculate the $50^{\text {th }}$ term
c) Is 120 in the sequence?
2) $n^{2}-5$ Find the first 4 terms in this sequence

Geometric Sequence Nth term

SIMPLIFYING \& MANIPULATING ALGEBRA

Algebra

Key Concept

Formula

$v=u+a t$

Expression $f^{2}+f^{2}+f^{2}$ Equation $34=12+6 t$

Identity
$c \times c=c^{2}$

33, 93, 94, 134a

Key Words

Formula: A rule
written using symbols that describe a relationship between different quantities.
Expression: Shows a mathematical relationship whereby there is no solution.
Equation: A
mathematical
statement that shows that two expressions are equal.
Identity: A relation which is true. No matter what values are chosen.

Tip

When expanding brackets be careful with negatives.

Simplify:

Examples

Expand and simplify:

$$
\begin{gathered}
9 a-2(3 a-4) \\
9 a-6 a+8 \\
3 a+8
\end{gathered}
$$

Factorise:

Expand and simplify:

Questions

1) $5 x+3 y-2 x+4 y$
2) $2 p-$
b) $8 a^{2}-10 a$
3) $12 b-3(2 b+5)$
4) Factorise a) $4 x+10$

$$
\begin{array}{lcr}
& \left(\mathrm{s}-p_{\nabla}\right) p_{Z}(\mathrm{q} & \left(\mathrm{s}+x_{\mathrm{Z}}\right) Z(\mathrm{e}(\mathrm{t} \\
\mathrm{SI}-q 9(\varepsilon & b_{\nabla}-d 9(乙 & \kappa_{L}+x \varepsilon(\tau
\end{array}
$$

:SyヨMSN \forall

STRAIGHT LINE GRAPHS AND EQUATION OF A LINE Algebra

Key Concepts

Coordinates in 2D are written as follows:
x is the
value that
is to the

left/right \quad| y is the |
| :---: |
| value |
| that is to |
| up/down |

Straight line graphs always have the equation:

$$
y=m x+c
$$

m is the gradient i.e. the steepness of the graph. c is the y intercept i.e. where the graph cuts the y axis.

Parallel lines always have the same gradient.

Plot the graph of $y=2 x+1$

x	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
y	1	2	3

Examples of lines parallel to this
graph are: $y=2 x-3$ or $y=2 x+7$

Examples

Calculate the equation of this line:

$$
\begin{aligned}
y & =m x+c \\
m & =\frac{4}{2} \\
& =2 \\
y & =2 x+c
\end{aligned}
$$

$$
\begin{array}{r|l|l|l|l|l|}
8 \\
\hline & & & B_{B} & & \\
& & & & \\
\hline
\end{array}
$$

Substitute in a coordinate: $(2,7)$

$$
\begin{aligned}
& 7=(2 \times 2)+c \\
& 3=c \\
& y=2 x+3
\end{aligned}
$$

1) Plot the line $y=3 x-2$
2) Find the equation of the line for the attached graph.
3) State the equation of a line that would be parallel to this line.

