ANGLE FACTS INCLUDING ON PARALLEL LINES Geometry and Measures

Key Concepts

Angles in a triangle equal $\mathbf{1 8 0}^{\circ}$.
Angles in a quadrilateral equal 360°.
Vertically opposite angles are equal in size.
Angles on a straight line equal $\mathbf{1 8 0}^{\boldsymbol{\circ}}$.
Base angles in an isosceles triangle are equal.

Alternate angles are equal in size.
Corresponding angles are equal in size.
Allied/co-interior angles are equal 180°.

$$
?=360-(65+110+87)
$$

$$
?=98^{\circ}
$$

Examples

$$
b=(180-116) \div 2
$$

$$
b=32^{\circ}
$$

Questions
Calculate the missing angle:
a)

b)

c)

45, 121, 122, 123

Key Words Angle Vertically opposite Straight line Alternate Corresponding Allied
Co-interior

ANGLE PROPERTIES Geometry and Measures

45, 121, 122,

Remember isosceles triangles have two equal angles and equilateral triangles have three equal angles.

AREA AND PERIMETER OF BASIC SHAPES
 Geometry and Measures

AREA OF CIRCLES AND PART CIRCLES
 Geometry and measures

BEARINGS Geometry and Measures

Key Concepts

Bearings are a type of angle that are used in real life directional instructions. They have three rules that they must conform to:

1) They must always be measured from North.
2) They must always be measured in a clockwise direction.
3) They must always have 3 figures e.g. 72° is written as 072°

Examples

We don't always need a protractor to find bearings, we can use our angle facts knowledge. $\mathrm{N} \quad$ Because we know cointerior angles sum to 180°, this angle must be 70°.

CONSTRUCTIONS

Geometry and Measures

Examples

Bisect the distance between two points.

1) Open your compasses past halfway between the two points and draw an arc.

2) Keep your compasses at the same width and repeat from the other point.

3) Draw a line joining the two points where the arcs cross

Bisect an angle.

1) Open your compasses and draw an arc over both lines from the angle

2) Keep your compasses at the same width and draw two further arcs with the point of your compasses at the intersections.

3) Draw a line joining the two points where the arcs cross and the angle point

Key Words
 Compass Bisect Angle
 Arc

Try and recreate the above two constructions on paper using a pair of compasses and a pencil and ruler.

ENLARGEMENT, SIMILARITY \& CONGRUENCE Geometry and Measures

Key Concept

Properties of similar shapes:

- The corresponding angles will be the same if shapes are similar.
- Corresponding edges must remain in proportion.

Maths
144, 148, 201, 181a, 181b, 12b

Key Words

Transformation: This means something about the shape has 'changed'. Reflection: A shape has been flipped.
Rotation: A shape has been turned.
Translation: A
movement of a shape.
Enlargement: A change in size, either bigger or smaller.
Congruent: These shapes are the same shape and same size but can be in any orientation.
Similar: Two shapes are mathematically similar if one is an enlargement of the other.

Tip

To find the centre of enlargement connect the corresponding vertices.

Examples

Enlarge shape A, scale factor 2, centre (0,0).

Scale factor 2 -

 Double the distance between each vertex and the centre of enlargement.
Questions

1) A triangle has lengths $3 \mathrm{~cm}, 4 \mathrm{~cm}$ and 5 cm . What will they be if enlarged scale factor 3.
2) Rectangle A measures 3 cm by 5 cm , B measures 15 cm by 25 cm . What is the scale factor of enlargement?

FOUR RULES OF CONGRUENCE Geometry and Measures

Key Concepts

Congruent triangles are triangles that have the same size and shape. This means that the corresponding sides are equal and the corresponding angles are equal.

There are four rules of congruency that prove whether a triangle is congruent or not.

Examples

SSS $=3$ sides on triangle A are equal to those on triangle B

ASA $=2$ angles with the included side on triangle A are equal to those on triangle B

SAS $=2$ sides with the included angle on triangle A are equal to those on triangle B

RHS = When the hypotenuse and another side on right angled triangle A are equal to those on triangle B

KINEMATIC FORMULAE AND CONVERSION OF UNITS Geometry and Measures

Key Concepts

a is constant acceleration
u is initial velocity
v is final velocity
s is displacement from the position when the time $=0$

$$
v=u+a t
$$

Velocity is speed in a given direction.

$$
s=u t+\frac{1}{2} a t^{2}
$$

Initial velocity is speed in a given direction at the start of the motion.

$$
v^{2}=u^{2}+2 a s
$$

Acceleration is the rate of change of velocity
i.e. how the speed changes with time

Maths
112, 142
Key Words
Acceleration
Velocity Speed Time Units

Examples

Write $72 m p h$ in m / s.
72 mph
$\times 1.6$
$115.2 \mathrm{~km} / \mathrm{h}$
$\times 1000$
$115200 \mathrm{~m} / \mathrm{h}$
$\div 60$
$1920 \mathrm{~m} / \mathrm{min}$
$\div 60$
$32 \mathrm{~m} / \mathrm{sec}$

1) Use 5 miles $=8 \mathrm{~km}$ to write 60 mph in km / h
2) Write $60 \mathrm{~km} / \mathrm{h}$ in m / s
3) Write $6 \mathrm{~m} / \mathrm{s}$ in mph

LOCl

Geometry and Measures

Examples

Shading a region within 2 cm from a given point.

Find where a point can be equidistant from two others.

Shading a region which is closer to point A than point B.

Use your skills from constructions and complete the perpendicular bisector. Then shade in the side of the line closer to the given point.

Try and recreate the above two loci and constructions on paper using a pair of compasses and a pencil and ruler.

PARALLEL LINES AND ANGLES Geometry and Measures

120

Tip

These angle properties can be used alongside all the other angle properties that you have learnt.

Questions - Find the labelled angles, give reasons.

PERIMETER AND CIRCUMFERENCE Geometry and Measures

Key Concepts

Parts of a circle

umference
of a circle is calculated by πd and is the distance around the circle.

Arc length of a sector is calculated by $\frac{\theta}{360} \pi d$.

Calculate:
a) Circumference

$$
\begin{aligned}
\mathrm{C} & =\pi \times 4 \\
& =4 \pi \\
\text { or } & =12.57 \mathrm{~cm}
\end{aligned}
$$

b) Diameter when the circumference is 20 cm

$$
\begin{aligned}
& \text { C }=\pi \times d \\
& 20=\pi \times d \\
& \frac{20}{\pi}=d \\
& \text { Or } 6.37 \mathrm{~cm}
\end{aligned}
$$

Examples

c) Perimeter

$P=\frac{\pi \times d}{2}+d$
$P=\frac{\pi \times 6}{2}+6$
$P=3 \pi+6$
Or $=15.42 \mathrm{~cm}$

d) Arc length

Arc $=\frac{\theta}{360} \times \pi \times d$

Arc $=\frac{28}{360} \times \pi \times 2 \times 10$
$\operatorname{Arc}=\frac{28}{360} \times \pi \times 20$
Arc $=\frac{14}{9} \pi$
Or $=4.89 \mathrm{~cm}$

$116,117,118,167$

Key Words Circle Perimeter Circumference

Radius

Diameter

Pi
Arc

Calculate:

1) The circumference of a circle with a diameter of 12 cm
2) The diameter of a circle with a circumference of 30 cm
3) The perimeter of a semicircle with diameter 15 cm
4) The arc length of the diagram

PERIMETER

Geometry and Measures

Key Concept 2D Shapes	
\square	Parallelogram
	Trapezium
	Right-angled triangle
	Isosceles triangle
	Equilateral triangle

10, 52, 118

Key Words

Perimeter: The distance around the outside of the shape. Unit of measure: This could be any unit of length cm , inch, m , foot, etc.
Dimensions: The lengths which give the size of the shape. Circumference: The perimeter of a full circle.

Tip

- Always include units with your answer.
- If you don't have a calculator use pi as 3.14.

Formula

Circumference $=\pi d$

Examples

Find the perimeter

Step 1 - Find the missing lengths.

Questions - Find the perimeter of each shape to 1 dp

PROPERTIES OF SHAPES

Geometry and Measures

PROPERTIES OF SHAPES
 Geometry and Measures

Key Concepts

Lines of symmetry

The number of lines that cut an image in half such that each half of the figure is the mirror image of the other half.

Order of rotation

The number of times a figure fits into itself in one complete rotation of 360 degrees.

Congruent shapes

Images that are identical to one another. They can be flipped or rotated, not enlarged.

This regular polygon has 5 lines of symmetry

Examples

symmetry

Order of rotation

11, 12b

Key Words
Rotation
Symmetry Congruent
Regular
Irregular

1) How many lines of symmetry does shape B have?

Questions
2) What is the order of rotation of shape E ?
3) Which shape is congruent to shape A ?
4) Which shape is regular?

PYTHAGORAS AND TRIGONOMETRY Geometry and Measures

REFLECTION AND ROTATION Geometry and Measures

Key Concepts

A reflection creates a mirror image of a shape on a coordinate graph. The mirror line is given by an equation eg. $y=2, x=2, y=$ x. The shape does not change in size.

A rotation turns a shape on a coordinate grid from a given point. The shape does not change size but does change orientation.

Clockwise

Anticlockwise

Reflect shape A in the line $x=1$. Label it B .

Examples

Reflect shape A in the line $y=x$. Label it B.

Rotate shape B from the point (-1, -2)

Key Words Rotate Clockwise Anticlockwise Centre Degrees
Reflect
Mirror image

Describe the single transformation vou see on each coordinate grid from A to B :

SIMILARITY - LENGTHS Geometry and Measures

Key Concepts

Similar shapes are an enlargement of one another.

A scale factor is used, whereby all lengths are multiplied by the same number.

When finding a missing length on the larger shape we multiply by the scale factor.

When finding a missing length on the smaller shape we divide by the scale factor.

MathsWatch

144, 201

1) Calculate the length of:
2) Calculate the length of:
a) PR
b) $B C$

a) $C D$
b) ED

TRANSLATION AND ENLARGEMENT Geometry and Measures

Key Concepts

A translation moves a shape on a coordinate grid. Vectors are used to instruct the movement:

Positive-Right
$\binom{\boldsymbol{x}}{\boldsymbol{y}}^{\boldsymbol{y}} \begin{aligned} & \text { Negative - Left } \\ & \\ & \\ & \\ & \text { Positive-Up } \\ & \text { Negative - Down }\end{aligned}$

An enlargement changes the size of an image using a scale factor from a given point.

Examples

Translate shape A by $\binom{-3}{-2}$. Label it B

Enlarge shape A by scale factor 2 from point P.

Enlarge shape A by scale factor $\frac{1}{2}$ from point P.

Maths

50, 148, 181a

Key Words
Translation
Enlargement
Scale factor
Centre
Positive
Negative

TYPES OF ANGLE AND ANGLES IN POLYGONS Geometry and Measures

Key Concepts

Regular polygons have equal lengths of sides and equal angles.

Angles in polygons
Sum of interior angles
$=($ number of sides -2$) \times 180$
Exterior angles of regular
polygons $=\frac{360}{\text { number of sides }}$

Types of angle

There are four types which need to be identified - acute, obtuse, reflex and right angled.

13, 123

Examples Regular Pentagon

Reflex is between 180° and 360°

Questions

Key Words Polygon Interior angle Exterior angle Acute Obtuse Right angle Reflex

1) Calculate the sum of the interior angles for this regular shape.
2) Calculate the exterior angle for this regular shape.
3) Calculate the size of one interior angle in this regular shape.

VOLUME AND SURFACE AREAS OF CYLINDERS Geometry and Measures

Key Concepts

A cylinder is a prism with the cross section of a circle.

The volume of a cylinder is calculated by $\pi r^{2} h$ and is the space inside the 3D shape

The surface area of a cylinder is calculated by $2 \pi r^{2}+\pi d h$ and is the total of the areas of all the faces on the shape.

From the diagram calculate:

Examples

b) Surface Area - You can use the net of the shape to help you

Area of two circles
$=2 \times \pi \times r^{2}$
$=2 \times \pi \times 4^{2}$
$=32 \pi$

$$
\begin{gathered}
\text { Area of rectangle } \\
=\pi \times d \times h \\
=\pi \times 8 \times 10 \\
=80 \pi
\end{gathered}
$$

$$
\begin{aligned}
\text { Surface Area } & =32 \pi+80 \pi \\
& =112 \pi \\
\text { or } & =351.86 \mathrm{~cm}^{3}
\end{aligned}
$$

MathsWatch

Key Words Cylinder Surface Area Radius Diameter Pi Volume
Prism

Calculate the volume and surface area of this cylinder

