## AREA AND PERIMETER OF BASIC SHAPES Geometry and Measures

## Key Concepts

The area of a $2 D$ shape is the space inside it. It is measured in units squared e.g. $\mathrm{cm}^{2}$

The perimeter of a shape is the distance around the edge of the shape. Units of length are used to measure perimeter e.g. $\mathrm{mm}, \mathrm{cm}, \mathrm{m}$

A compound shape is a shape made up of others joined together.
$53,54,55,56$


## Examples



$$
\begin{aligned}
\text { Area } & =(5 \times 3)+(2 \times 5) \\
& =25 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\text { Perimeter } & =3+5+8+2+5+3 \\
& =26 \mathrm{~cm}
\end{aligned}
$$

Key words Area Perimeter Base Height Width Length

Calculate the area and perimeter of each shape:


## AREA OF CIRCLES AND PART CIRCLES Geometry and Measures

## Key Concepts

The area of a circle is calculated by $\pi r^{2}$

The area of a sector is calculated by $\frac{\theta}{360} \pi r^{2}$


Calculate:
a) Area


$$
\begin{aligned}
\mathrm{A} & =\pi \times 3^{2} \\
& =9 \pi \\
\text { or } & =28.3 \mathrm{~cm}^{2}
\end{aligned}
$$

b) Radius when the area is $20 \mathrm{~cm}^{2}$
$\begin{aligned} \mathrm{A} & =\pi \times r^{2} \quad \sqrt{20} \\ 20 & =\pi \times r^{2} \quad \sqrt{\frac{20}{\pi}}=r \\ \frac{20}{\pi} & =r^{2} \quad \text { Or } 2.52 \mathrm{~cm}\end{aligned}$
c) Area


$$
\begin{gathered}
P=\frac{\pi \times r^{2}}{2} \\
P=\frac{\pi \times 6^{2}}{2} \\
P=18 \pi \\
\text { Or }=56.55 \mathrm{~cm}^{2}
\end{gathered}
$$

d) Area of a sector

Arc $=\frac{\theta}{360} \times \pi \times r^{2}$
Arc $=\frac{28}{360} \times \pi \times 10^{2}$
Arc $=\frac{28}{360} \times \pi \times 100$
Arc $=\frac{70}{9} \pi$
Or $=24.43 \mathrm{~cm}$


## MathsWatch

117, 149

## Examples

Calculate:

1) The area of a circle with a radius of 9 cm
2) The radius of a circle with an area of $45 \mathrm{~cm}^{2}$
3) The area of a semicircle with diameter of 16 cm
4) The area of the sector in the diagram


## PERIMETER AND CIRCUMFERENCE Geometry and Measures

## Key Concepts

Parts of a circle
Calculate:
a) Circumference

Circumference
of a circle is calculated by $\pi d$ and is the distance around the circle.

Arc length of a sector is calculated by $\frac{\theta}{360} \pi d$.


$$
\begin{aligned}
\mathrm{C} & =\pi \times 4 \\
& =4 \pi \\
\text { or } & =12.57 \mathrm{~cm}
\end{aligned}
$$

b) Diameter when the circumference is 20 cm

$$
\begin{aligned}
\mathrm{C} & =\pi \times d \\
20 & =\pi \times d \\
\frac{20}{\pi} & =d
\end{aligned}
$$

Or 6.37 cm

## Examples

## c) Perimeter



$$
P=\frac{\pi \times d}{2}+d
$$

$$
P=\frac{\pi \times 6}{2}+6
$$

$$
P=3 \pi+6
$$

$$
\mathrm{Or}=15.42 \mathrm{~cm}
$$

## d) Arc length

Arc $=\frac{\theta}{360} \times \pi \times d$


Arc $=\frac{28}{360} \times \pi \times 2 \times 10$
Arc $=\frac{28}{360} \times \pi \times 20$
Arc $=\frac{14}{9} \pi$
Or $=4.89 \mathrm{~cm}$

## 5 MathsWatch

116, 118, 149

Key Words
Circle
Perimeter
Circumference
Radius
Diameter
Pi
Arc

## Calculate:

1) The circumference of a circle with a diameter of 12 cm
2) The diameter of a circle with a circumference of 30 cm
3) The perimeter of a semicircle with diameter 15 cm
4) The arc length of the diagram

## VOLUME AND SURFACE AREA OF CONES, SPHERES AND PYRAMIDS Geometry and Measures

## Key Concepts

In your exam you will be given the following formulae to use: Volume of a sphere $=\frac{4}{3} \pi r^{3}$ Surface area of a sphere $=4 \pi r^{2}$

$$
\begin{gathered}
\text { Volume of a cone }=\frac{\pi r^{2} h}{3} \\
\text { Surface area of a cone }=\pi r^{2}+\pi r l
\end{gathered}
$$

In your exam you will need to know the following formulae: Volume of a pyramid $=\frac{\text { base area } \times \text { height }}{3}$


169,170,171

Key Words
Surface Area Volume Sphere Cone Pyramid Radius

## Examples



Volume of a pyramid $=\frac{(3.2 \times 3.2) \times 7}{3}$

$$
=23.89 \mathrm{~cm}^{3}
$$

Surface area $=$ base +4 triangles
$3.2 \times 3.2=10.24 \mathrm{~cm}^{2}$
We will need to find the slanted height to be able to calculate the area of our triangles.

Area of 4 triangles $=$
Slanted height $=\sqrt{7^{2}+1.6^{2}}$

$$
=\sqrt{51.56} \mathrm{~cm}
$$

$$
\begin{gathered}
4\left(\frac{3.2 \times \sqrt{51.56}}{2}\right) \\
=45.96 \mathrm{~cm}^{2}
\end{gathered}
$$

Surface area $=10.24+45.96=56.20 \mathrm{~cm}^{2}$

Calculate the volume and surface area of:
1)

2)



## VOLUME AND SURFACE AREAS OF CYLINDERS Geometry and Measures

## Key Concepts

A cylinder is a prism with the cross section of a circle.


The volume of a cylinder is calculated by $\pi r^{2} h$ and is the space inside the 3D shape

The surface area of a cylinder is calculated by $2 \pi r^{2}+\pi d h$ and is the total of the areas of all the faces on the shape.

From the diagram calculate:

## Examples

b) Surface Area - You can use the net of the shape to help you

Area of two circles

$$
=2 \times \pi \times r^{2}
$$

$$
=2 \times \pi \times 4^{2}
$$

$$
=32 \pi
$$

Area of rectangle

$$
\begin{aligned}
& =\pi \times d \times h \\
& =\pi \times 8 \times 10 \\
& =80 \pi
\end{aligned}
$$

$$
\begin{aligned}
\text { Surface Area } & =32 \pi+80 \pi \\
& =112 \pi \\
\text { or } & =351.86 \mathrm{~cm}^{3}
\end{aligned}
$$



MathsWatch
119

Key Words Cylinder Surface Area

## Radius

 Diameter
## Pi

Volume
Prism

Calculate the volume and surface area of this cylinder
a) Volume
$V=\pi \times r^{2} \times h$
$V=\pi \times 4^{2} \times 10$
$V=160 \pi$
Or $=502.65 \mathrm{~cm}^{3}$


## VOLUME AND SURFACE AREA OF PRISMS Geometry and Measures



