COMPOUND INTEREST AND DEPRECIATION Number

Key Concepts

We use multipliers to increase and decrease an amount by a particular percentage.

Percentage increase:
Value $\times(1+$ percentage as a decimal $)$

Percentage decrease:

Value $\times(1-$ percentage as a decimal $)$
Appreciation means that the value of something is going up or increasing.

Depreciation means that the value of something is going down or reducing

Per annum is often used in monetary questions meaning per year.

Examples

Compound interest:

Joe invest $£ 400$ into a bank account that pays 3% compound interest per annum. Calculate how much money will be in the
bank account after 4 years.
Value
$\times(1+\text { percentage as a decimal })^{\text {years }}$
$=400 \times(1+0.03)^{4}$
$=400 \times(1.03)^{4}$
$=£ 450.20$

Compound depreciation:
The original value of a car is $£ 5000$. The value of the car depreciates at a rate of 7.5% per annum. Calculate the value of the car after 3 years.

$$
\text { Value } \times(1-\text { percentage as a decimal })^{\text {years }}
$$

$$
=5000 \times(1-0.075)^{3}
$$

$$
=5000 \times(0.925)^{3}
$$

$$
=£ 3957.27
$$

164

Key Words Percent
Appreciate Depreciate Interest Annum
Compound Multiplier

1) Jane invests $£ 670$ into a bank account that pays out 4\% compound interest per annum. How much will be in the bank account after 2 years?
2) A house has decreased in value by 3% for the past 4 years. If originally it was worth $£ 180,000$, how much is it worth now?

COMPOUND MEASURES Geometry and Measures

Key Concepts

A car is travelling at a speed of 35 mph and is scheduled to travel
227.5 miles. How long will this take in hours and minutes?
227.5 miles. How lo
Time $=\frac{\text { distance }}{\text { speed }}$

Time $=\frac{227.5}{35}=6.5$ hours $=6$ hours 30 minutes

A $5 \mathrm{~m}^{3}$ box has a density of $200 \mathrm{~g} / \mathrm{m}^{3}$. What is the mass of the box? Mass $=$ Density \times Volume
Mass $=200 \times 5=1000 \mathrm{~g}$

Examples

10 N of force are applied to a block with area $4 \mathrm{~m}^{2}$. Calculate the pressure.

$$
\begin{aligned}
& \text { Pressure }=\frac{\text { force }}{\text { area }} \\
& \text { Pressure }=\frac{10}{4}=2.5 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

> 1) A block exerts a force of 120 Newtons on the ground. The block has an area of $2 \mathrm{~m}^{2}$. Work out the pressure on the ground.
> 2) A piece of gold has a mass of 760 grams and a volume of $40 \mathrm{~cm}^{3}$.
> Work out the density of the piece of gold.
3) Dani leaves her house at 0800 . She drives 63 miles to work. She drives at an average speed of 27 miles per hour. At what time does Dani arrive at work?

DECIMALS Number

Key concepts

Place value:
Th $\underline{H} \underline{T} \underline{U} \cdot \underline{t} \underline{h} \underline{t h}$

When adding and subtracting decimals we must ensure the decimal places are underneath each other when setting up.

When multiplying decimals, calculate without the decimal point and use estimation to help replace it.

Examples

3 hundreds
$42.8+5.32 \quad 42.8-5.32$
42.80
$+5.32$
48.12

Forty or 4 tens

$$
5 \text { units } 4 \text { tenths }
$$ 312.81

42.8

- 5.32
37.48
42.8×5.3

226.84

Estimated answer $40 \times 5=200$

Key Words
Decimal Tenths
Hundredths
Thousandths
A) What is the value of the 4 in each number?

1) 498
2) 8746
3) 6.243
4) 1.004
B) Work out:
5) $3.1+5.27$
6) $16.4-9.18$
7) 0.03×500
8) 3.4×5.6
9) $\quad 4.79 \times 6.8$

FACTORS, MULTIPLES AND PRIMES Number

Key Concepts

Prime factor decomposition Breaking down a number into its prime factors

Highest common factor Finding the largest number which divides into all numbers given

Lowest common multiple

Finding the smallest number which both numbers divide into

Examples

Find the highest common factor and lowest common multiple of 60 and 75 :

HCF - Mulitiply all numbers in the intersection

$$
=3 \times 5=15
$$

$$
\begin{array}{ccc}
2 \times 2 \times 3 \times 5 & 3 \times 5 \times 5 & L C M-\text { Multiply all numbers in the Venn diagram } \\
2^{2} \times 3 \times 5 & 3 \times 5^{2} & =2 \times 2 \times 3 \times 5 \times 5=300
\end{array}
$$

Questions

1) Write 80 as a product of its prime factors
2) Write 48 as a product of its prime factors
3) Find the LCM and HCF of 80 and 48

Highest Common Factor

FOUR OPERATIONS WITH FRACTIONS Number

Key Concepts

An improper fraction is when the numerator is larger than the denominator e.g. $\frac{20}{12}$

Converting from a mixed number into an improper fraction:
$2 \frac{3}{5}=\frac{(2 \times 5)+3}{5}=\frac{13}{5}$

A reciprocal is the value that when multiplied by another gives the answer of 1.
Eg. $\frac{1}{8}$ is the reciprocal of 8 .
$\frac{2}{5}$ is the reciprocal of $\frac{5}{2}$
$25,26,71,73$, 74

$$
\begin{aligned}
& 1 \frac{2}{3}+2 \frac{1}{4} \\
& =\frac{5}{3}+\frac{9}{4} \underset{\substack{\text { Convert into an } \\
\text { improper fraction }}}{ }=\frac{8}{3}-\frac{2}{4}-1 \frac{1}{4} \\
& =\frac{20}{12}+\frac{27}{12} \underset{\substack{\text { Find a common } \\
\text { denominator }}}{\longleftrightarrow}=\frac{32}{12}-\frac{15}{12} \\
& =\frac{47}{12} \\
& =3 \frac{11}{12} \quad \begin{array}{c}
\text { Convert back into } \\
\text { a mixed number } \\
\longleftrightarrow
\end{array}=1 \frac{17}{12}
\end{aligned}
$$

$$
1 \frac{1}{3} \times 2 \frac{3}{4}
$$

$$
\stackrel{x}{ }
$$

$$
=\frac{4}{3} \times \frac{11}{4}
$$

$$
\underbrace{}_{x}
$$

$$
\begin{aligned}
& 2 \frac{1}{3} \div 1 \frac{3}{5} \\
& =\frac{7}{3} \div \frac{8}{5} \quad \begin{array}{l}
\text { Find the reciprocal } \\
\text { of the second fraction.. }
\end{array} \\
& =\frac{7}{3} \times \frac{5}{8} \quad \text {...and multiply }
\end{aligned}
$$

$$
=\frac{44}{12}
$$

$$
=3 \frac{8}{12}
$$

Key Words

Fraction Equivalent Reciprocal Numerator
Denominator Improper/Top heavy Mixed number

Calculate:

1) $1 \frac{2}{3}+2 \frac{3}{4}$
2) $3 \frac{3}{4}-1 \frac{1}{3}$
3) $3 \frac{1}{5} \times 1 \frac{2}{3}$
4) $1 \frac{3}{5} \div 2 \frac{7}{10}$
5) $\frac{2}{3}$
6) 9
7) 0.75

FOUR OPERATIONS WITH INTEGERS \& DECIMALS Number

Key Words
Place Value: The value a digit takes when placed in a particular position of a number.

Add Sum Total All together Plus In all	Multiply Product Times Twice Total Multiplied by
\square Subtract Remain Difference Less than Fewer How many more Minus	Divide Quotient Goes into Split Equally Each

Examples

74-27 = 47 worked by counting back:

$$
56 \times 27
$$

$$
\begin{array}{r}
97 \\
39^{2} 1
\end{array}
$$

\times	20	7	
50	1000	350	1350
6	120	42	162
			1512

Questions

Multiplication and addition are associative, so you can work them out in any order.
So 3×4 is the same as
4×3.
$4+3$ is the same as $3+4$
$\begin{array}{lll}\text { 1) } & \text { a) } 49+37 & \text { b) } 125+69 \\ \text { c) } 5.6+24.8\end{array}$
2) a) $64-28$
b) $134-57$
c) $16.2-9.5$
3) a) 7×146
b) 34×67
c) 2.9×7.2
$\begin{array}{lll}\text { 4) a) } 294 \div 7 & \text { b) } 192 \div 6\end{array}$

17, 18, 19,20, 66, 67

FRACTIONS, DECIMALS AND PERCENTAGES Number

Key Concepts

A fraction is a numerical quantity that is not a whole number.

A decimal is a number written using a system of counting based on the number 10.

A percentage is an amount out of 100.
$84,85,88,89$,

Mathswatch

Key Words Fraction Decimal Percentage
Division Multiply

1) Convert the following into percentages:
a) 0.4
b) 0.08
c) $\frac{6}{20}$
d) $\frac{3}{25}$
2) Compare and order the following in ascending order:

$$
\begin{array}{lllll}
\frac{3}{4} & 76 \% & 0.72 & \frac{4}{5} & 0.706
\end{array}
$$

FRACTIONS Number

$\frac{x}{y} \longrightarrow \frac{\text { Key Concepts }}{\text { Denominator }}$

Equivalent fractions

 have the same value as one another. Eg. $\frac{1}{4}=\frac{2}{8}=\frac{3}{12}$Calculate $\frac{4}{5}$ of 65 :

Examples

$\frac{4}{5}$ of a number is 52 , what is the original number?
$52 \div 4 \div 13$
$13 \times 5=65$
Multiply this by the denominator

Order these fractions in ascending order:

To be able to compare fractions we must have a common denominator
$24,25,26,70$, 72

1) Calculate $\frac{2}{7}$ of 56 .
2) $\frac{3}{8}$ of a number is 36 , what is the original number?
3) Order the following in ascending order: $\quad \frac{2}{3} \quad \frac{5}{6} \quad \frac{3}{8} \quad \frac{7}{12}$

Reciprocal
Numerator
Denominator

INDICES AND ROOTS
 Algebra

Key Concepts

$$
\begin{gathered}
a^{m} \times a^{n}=a^{m+n} \\
a^{m} \div a^{n}=a^{m-n} \\
\left(a^{m}\right)^{n}=a^{m n} \\
a^{\frac{1}{n}}=\sqrt[n]{a} \\
a^{-m}=\frac{1}{a^{m}}
\end{gathered}
$$

Examples

Simplify each of the following:

1) $a^{6} \times a^{4}=a^{6+4}$
$=a^{10}$
2) $\begin{aligned}\left(3 a^{4}\right)^{3} & =3^{3} a^{4 \times 3} \\ & =27 a^{12}\end{aligned}$
3) $a^{\frac{1}{2}}=\sqrt{a}$
4) $9^{\frac{1}{2}}=\sqrt{9}$
5) $a^{6} \div a^{4}=a^{6-4}$
6) $\frac{5^{2} \times 5^{6}}{5^{4}}=\frac{5^{8}}{5^{4}}$

$$
=3 \text { or }-3
$$

3) $\left(a^{6}\right)^{4}=a^{6 \times 4}$
$=5^{8-4}$
4) $2^{-3}=\frac{1}{2^{3}}=\frac{1}{8}$

MathsWatch
2982154188131

Key Words
Powers
Roots
Indices Reciprocal

Simplify:

1) $a^{3} \times a^{2}$
2) $b^{4} \times b$
3) $d^{-5} \times d^{-1}$
4) $m^{6} \div m^{2}$
5) $n^{4} \div n^{4}$
6) $\frac{8^{4} \times 8^{5}}{8^{6}}$
7) $\frac{4^{9} \times 4}{4^{3}}$
8) $\left(3^{2}\right)^{5}$
9) $81^{\frac{1}{2}}$
10) 5^{-2}

INTEGERS, ROUNDING AND PLACE VALUE Number

Key Concepts

Digits are the individual components of a number.

Integers are whole numbers.

Rounding rules:
A value of 5 to 9 rounds the number up.
A value of 0 to 4 keeps the number the same.

Examples

Order the following numbers starting with the smallest:

1) $5,-3,4,7,-2$

$$
-3,-2,4,5,7
$$

2) $\quad 0.067 \quad 0.6 \quad 0.56 \quad 0.65 \quad 0.605$

Rewrite $0.067,0.600,0.560,0.650,0.605$

$$
\begin{array}{lllll}
0.067 & 0.56 & 0.6 & 0.605 & 0.65
\end{array}
$$

Round 3.527 to:
a) 1 decimal place

$$
3.527 \longrightarrow 3.5
$$

b) 2 decimal places

$$
3.527 \longrightarrow 3.53
$$

c) 1 significant figure

$$
3: 527 \rightarrow 4
$$

I5 Maths
$2,3,31,32,90$

Key Words
Integer Even
Digit Odd
Decimal place
Significant figures
A) Order the following numbers starting with the smallest:

1) $6,-2,0,-5,3$
2) $0.72,0.7,0.072,0.07,0.702$
B) Round the following numbers to the given degree of accuracy
3) 14.1732 (1d.p.) 2) 0.0568 (2d.p.) 3)3418 (1 S.F)

ORDER OF OPERATIONS Number

Key Concept

B Brackets
I Indices
D Division
M Multiplication
A Addition
S Subtraction
If a calculation contains the looped calculations work from left to right．

75

Tip

－Put brackets around the calculations which need to be done first． －Indices also includes roots．
Operation：In maths these are the functions $\times \div+$ ．
Commutative：
Calculations are commutative if changing the order does not change the result．
Associative：In these calculations you can re－group numbers and you will get the same answer．
Indices：These are the squares，cubes and powers．

Examples

Questions

1） $7-10 \div 2$
2） $4^{3}-13 \times 4$
3） $21 \div 7-2$
4） $12 \div(7-3)$
5） $20 \div 2^{2}$
6）$(16-13) \div 3$
7）Place brackets to make the calculation work $20 \div 5-3=10$

$$
0 I=(\varepsilon-\varsigma) \div 0 Z(L \quad \tau(9 \quad \varsigma(S \quad \varepsilon(t \quad \tau(\varepsilon \quad \text { 乙I }(乙 \quad \text { 乙 (I :Sy } \exists M S N \forall
$$

PERCENTAGE CHANGE AND REVERSE PERCENTAGES Number

Key Concepts

Calculating percentages of an amount without a calculator:
10% = divide the value by 10
1% = divide the value by 100

Calculating percentages of an amount with a calculator:

Amount \times percentage as a decimal

Calculating percentage increase/decrease:

Amount $\times(1 \pm$ percentage
as a decimal)

Percentage change:

A dress is reduced in price by 35\% from f 80 . What is it's new price?

Value $\times(1-$ percentage as a decimal $)$ $=80 \times(1-0.35)$
$=£ 52$

A house price appreciates by 8% in a year. It originally costs $£ 120,000$, what is the new value of the house?

Value $\times(1+$ percentage as a decimal $)$ $=120,000 \times(1+0.08)$
$=£ 129,600$

Reverse percentages: This is when we are trying to find out the original amount.

A pair of trainers cost $£ 35$ in a sale. If there was 20% off, what was the original price of the trainers?

Value $\div(1-0.20)$
$=35 \div 0.8$
$=£ 43.75$

A vintage car has increased in value by 5\%, it is now worth $£ 55,000$. What was it worth originally?

Value $\div(1+0.05)$
$=55,000 \div 1.05$
$=£ 52,380.95$
Examples

MathsWatch

109, 110

Key Words
Percent Increase/decrease Reverse
Multiplier Inverse

1a) Decrease $£ 500$ by 6%
b) Increase 70 by 8.5%
2) A camera costs $£ 180$ in a 10% sale. What was the pre-sale price
3) The cost of a holiday, including VAT at 20% is $£ 540$. What is the pre-VAT price?

PERCENTAGES Number

PLACE VALUE, DECIMALS \& USING SCALES Number

Key Concept

Multiply/Divide by powers of 10

10000	1000	100	10	1	$\frac{1}{10}$	$\frac{1}{100}$	$\frac{1}{1000}$

$1,3,30$

Tip

- Add digits when ordering decimals. - The number of zero's tells you the number of places to move the digits.

Key Words

Decimal: A number that contains a point.

Metric measure: The unit used to measure length, mass etc.

Scale: The conversion to convert between drawings and real life sizes.

Questions

1) Order 1.52, 1.508, 1.5, 1.05, 1.51
2) Work out
a) 1.35×10
b) 0.6×100
c) $4.5 \div 100$
3) Convert
a) 36 mm to cm
b) 7 cm to mm
c) 450 cm to m
d) 620 g to kg
e) 4.2 kg to g
f) 0.7 kg to g

PROFIT AND LOSS
 Number

Key Concepts

A person or company makes a profit when they have a financial gain．It is the difference between the price a product is sold for and the price it was originally bought for．It will be a positive value．

A person or company makes a loss when they lose money．It is the difference between the price a product is sold for and the price it was originally bought for．It will be a negative value．

Calculating percentage change：

$$
\frac{\text { sell price }- \text { original price }}{\text { orginal price }} \times 100
$$

Key Words Profit Loss Percentage Financial

Examples

A house is valued at $£ 200,000$ in 2018 ． It was sold in 2020 for a price of £240，000．
What percentage profit was made on this house？

Profit $=\frac{240000-200000}{200000} \times 100$

$$
=20 \% \text { Profit }
$$

A car originally cost $£ 8500$ ．It was sold to another owner 3 years later for a price of $£ 5000$ ．
What percentage loss was made on this car？

$$
\begin{aligned}
& \text { Loss }=\frac{5000-8500}{5000} \times 100 \\
& =-70 \% \\
& =70 \% \text { Loss }
\end{aligned}
$$

1）A market seller buys a box of apples for $£ 5$ ．He sells all of the apples for a total of $£ 5.50$ ．What is the percentage profit made on the apples？
2）A mobile phone was originally bought for $£ 800$ ．It was resold 2 years later for a price of $£ 350$ ．What was the percentage loss of the phone？

STANDARD FORM
 Number

Key Concepts

We use standard form to write a very large or a very small number in scientific form.

Must be $\times 10$ b is an integer

$$
a \times 10^{b}
$$

Must be $1 \leq a<10$

Write the following in standard form:

1) $3000=3 \times 10^{3}$
2) $4580000=4.58 \times 10^{6}$
3) $0.0006=6 \times 10^{-4}$
4) $0.00845=8.45 \times 10^{-3}$

Examples

Calculate the following, write your answer in standard form:

1) $\left(3 \times 10^{3}\right) \times\left(5 \times 10^{2}\right)$

$$
\left.\begin{array}{l}
3 \times 5=15 \\
10^{3} \times 10^{2}=10^{5}
\end{array}\right\} \begin{gathered}
15 \times 10^{5} \\
=1.5 \times 10^{6}
\end{gathered}
$$

2) $\left(8 \times 10^{7}\right) \div\left(16 \times 10^{3}\right)$

MathsWatch

83

Key Words Standard form

Base 10

Links
Science
A) Write the following in standard form:

1)	74000	2) 1042000
B) 0.009	4) 0.00000124	
B)	Work out:	
1)	$\left(5 \times 10^{2}\right) \times\left(2 \times 10^{5}\right)$	2) $\left(4 \times 10^{3}\right) \times\left(3 \times 10^{8}\right)$
3)	$\left(8 \times 10^{6}\right) \div\left(2 \times 10^{5}\right)$	4) $\left(4.8 \times 10^{2}\right) \div\left(3 \times 10^{4}\right)$

$\begin{array}{llll}\text { 1) } \quad 74000 & \text { 2) } 1042000 & \text { 3) } 0.009 & \text { 4) } 0.00000124\end{array}$
B) Work out:

1) $\left(5 \times 10^{2}\right) \times\left(2 \times 10^{5}\right) \quad$ 2) $\left(4 \times 10^{3}\right) \times\left(3 \times 10^{8}\right)$
2) $\left(8 \times 10^{6}\right) \div\left(2 \times 10^{5}\right) \quad$ 4) $\left(4.8 \times 10^{2}\right) \div\left(3 \times 10^{4}\right)$
