LISTING OUTCOMES AND SAMPLE SPACE **Probability**

Key Concepts When there are a number of different possible outcomes in a situation we need a logical and systematic way in which to view them all.

We can be asked to **list** all possible outcomes e.g. choices from a menu, order in which people finish a race.

We can also use a **sample** space diagram. This records the possible outcomes of two different events happening.

	E	Examples
Starter	Main	Two of the st
Fishcak Melor	Beef	
	ombinations possible er and one main are	1) \
	M, L M, B M, S write the initials of eacl You do not need to w rd.	2) N n ar
Key Words List Outcome Sample space	1) Abe, Ben and have a race. List of the options fo the order that th boys can end the race.	all r e <u>io</u>

Probability

dice are thrown and the possible outcomes are shown in sample space diagram below:

	1 2		3	4	5	6	
1	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	
2	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)	
3	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)	
4	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)	
5	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)	
6	(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)	

What is the probability that 2 numbers which are the same are rolled?

- outcomes where numbers are the same 6
- $\frac{1}{36} =$ total number of outcomes

What is the probability that two even numbers re rolled?

Spinner

Green

H,G

T,G

Red

H,R

T,R

Heads

Tails

- outcomes where numbers are both even 9 36
 - total number of outcomes

	2a) What is the
	probability that a
Blue	head is landed on?
	b) What is the
Н,В	probability that a
Т,В	head and a green
	are landed on?

PROBABILITY TREE DIAGRAMS

Probability

THEORETICAL PROBABILITY

Probability

Key Concepts	Probability sca	ale:			Examp	oles					
Probabilities can be described using words and numerically.	ImpossibleEven chanceCertain 0 1 1 1 4 1 2 3 4 4					There are only red counters, blue counters, white counters and black counters in a bag.					
We can use fractions , decimals or		.25	0.5	0.75	1		Colour	Red	Blue	Black	White
percentages to represent a probability.	0% 2	5%	50 %	75%	100%		No. of counters	9	3 <i>x</i>	<i>x</i> -5	2 <i>x</i>
Theoretical probability is what should happen if all variables	There are only red counters, blue counters, white counters and black counters in a bag.					A counter is chosen at random, the probability it is red is $\frac{9}{100}$. Work out the probability is black.					
were fair.	Colour	Red	Blue	Black	White						
All probabilities must add to 1 .	No. of counters	9	3	5	2		9 + 3x + x - 5 + 2x = 100 $6x + 4 = 100$				
The probability of something NOT happening equals: 1 – (probability of it happening)	1) What is the probability that a blue counter is chosen? $\frac{3}{19} = \frac{number \ of \ blue}{total \ number \ of \ counters}$ 2) What is the probability that red is not chosen? $\frac{10}{19} = \frac{number \ of \ all \ other \ colours}{total \ number \ of \ counters}$					x = 16 Number of black counters = 16 - 5 = 11 Probability of choosing black = $\frac{11}{100}$					
	Key Words			counter	5	-					
A MathsWatch	Theoretical				1 2		3		1	2	3
	Probability Fraction		P	rob	5 4		9	Prob	0.37	2 <i>x</i>	x
14, 59	Praction Decimal 1a) Calculate the probability of choosing a 2. 2) Calculate the probability of choosing a 3. Percentage b) Calculate the probability of not choosing a 3. or a 3. Certain Calculate the probability of not choosing a 3. or a 3.						noosing a 2				
	Impossible									07 07	
	Even chance						t2.0 = (s	e)9 24.0 =	2) P(2)	$\frac{81}{6}$ (q $\frac{81}{7}$ (NSMERS: 1a