LISTING OUTCOMES AND SAMPLE SPACE Probability

Key Concepts

When there are a number of different possible outcomes in a situation we need a logical and systematic way in which to view them all.

We can be asked to list all possible outcomes e.g. choices from a menu, order in which people finish a race.

We can also use a sample space diagram. This records the possible outcomes of two different events happening

Examples

Two dice are thrown and the possible outcomes are shown in the sample space diagram below:

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathbf{1}$	$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$	$(1,6)$
$\mathbf{2}$	$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	$(2,5)$	$(2,6)$
$\mathbf{3}$	$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$	$(3,5)$	$(3,6)$
$\mathbf{4}$	$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	$(4,5)$	$(4,6)$
$\mathbf{5}$	$(5,1)$	$(5,2)$	$(5,3)$	$(5,4)$	$(5,5)$	$(5,6)$
$\mathbf{6}$	$(6,1)$	$(6,2)$	$(6,3)$	$(6,4)$	$(6,5)$	$(6,6)$

1) What is the probability that 2 numbers which are the same are rolled?

$$
\frac{6}{36}=\frac{\text { outcomes where numbers are the same }}{\text { total number of outcomes }}
$$

) What is the probability that two even numbers are rolled?
$\frac{9}{36}=\underline{\text { outcomes where numbers are both even }}$ $\overline{36}=\frac{\text { total number of outcomes }}{}$

58, 69, 126

Starter	Main
Fishcake Melon	Lasagne Beef Salmon

List all of the combinations possible when one starter and one main are chosen.

F, L	M, L
F, B	M, B
F, S	M, S

Note: You can write the initials of each option in a test. You do not need to write out the full word.

2a) What is the probability that a head is landed on? b) What is the probability that a head and a green are landed on?

1) Abe, Ben and Carl have a race. List all of the options for the order that the boys can end the race.

		Spinner		
$\div \bar{\circ} \mathrm{O}$		Red	Green	Blue
	Heads	H,R	H,G	H,B
	Tails	T,R	T,G	T,B

PROBABILITY TREE DIAGRAMS Probability

Key Concepts

Independent events are events which do not affect one another

Dependent events affect one another's probabilities. This is also known as conditional probability.

We multiply two probabilities when one event follows another.

There are red and blue counters in a bag
The probability that a red counter is chosen is $\frac{2}{9}$.
A counter is chosen and replaced, then a second counter is chosen.
Draw a tree diagram and calculate the probability that two counters of the same colour are chosen.

Prob of two reds:
$\frac{2}{9} \times \frac{2}{9}=\frac{4}{81}$
Prob of two blues :
$\frac{7}{9} \times \frac{7}{9}=\frac{49}{81}$

Prob of same colours:

$$
\frac{4}{81}+\frac{49}{81}=\frac{53}{81}
$$

Key Words Independent
Dependant Conditional
Probability
Fraction
Multiply

There are blue and green pens in a drawer.
There are 4 blues and 7 greens.
A pen is chosen and then replaced, then a second pen is chosen. Draw a tree diagram to show this information and calculate the probability that pens of different colours are chosen.

THEORETICAL PROBABILITY

Probability

Key Concepts

Probabilities can be described using words and numerically

We can use fractions, decimals or percentages to represent a probability.

Theoretical probability is what should happen if all variables were fair.

All probabilities must add to 1.

The probability of something NOT happening equals:
$1-$ (probability of it happening)

Probability scale: Examples

Impossible	Even chance			Certain
Γ	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{3}{4}$	$\frac{4}{4}$
$\frac{0}{4}$	$\frac{1}{4}$	$\frac{1}{2}$	0.75	1
0	0.25	0.5	0.75	100%
0%	25%	50%	75%	

There are only red counters, blue counters, white counters and black counters in a bag

Colour	Red	Blue	Black	White
No. of counters	9	3	5	2

1) What is the probability that a blue counter is chosen? $\quad \frac{3}{19}=\frac{\text { number of blue }}{\text { total number of counters }}$
2) What is the probability that red is not chosen?

$$
\frac{10}{19}=\frac{\text { number of all other colours }}{\text { total number of counters }}
$$

There are only red counters, blue counters, white counters and black counters in a bag.

Colour	Red	Blue	Black	White
No. of counters	9	$3 x$	$x-5$	$2 x$

A counter is chosen at random, the probability it is red is $\frac{9}{100}$. Work out the probability is black.

$$
\begin{aligned}
9+3 x+x-5+2 x & =100 \\
6 x+4 & =100 \\
x & =16
\end{aligned}
$$

Number of black counters $=16-5$
= 11
Probability of choosing black $=\frac{11}{100}$

MathsWatch

14, 59

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Prob	5	4	9

1a) Calculate the probability of choosing a 2 b) Calculate the probability of not choosing a 3

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Prob	0.37	$2 x$	x

2) Calculate the probability of choosing a 2 or a 3.

Certain
Impossible
Even chance

