RELATIVE FREQUENCY

 Probability
Key Concepts

Experimental probability differs to theoretical probability in that it is based upon the outcomes from experiments. It may not reflect the outcomes we expect.

Experimental probability is also known as the relative frequency of an event occurring.

Estimating the number of times an event will occur:

Probability \times no. of trials

125

Examples

Colour	red	blue	white	black
Prob	x	0.2	0.3	x

A spinner is spun, it has four colours on it.
The relative frequencies of each colour are recorded.
The relative frequency of red and black are the same.
a) What is the relative frequency of red?

$$
\begin{gathered}
1-(0.2+0.3)=0.5 \\
x=\frac{0.5}{2}=0.25
\end{gathered}
$$

b) If the spinner is spun 300 times, how many times do you expect it to land on white?

$$
0.3 \times 300=90
$$

Key Words Experimental Relative frequency Fraction Decimal
Probability

A spinner is spun which has 1,2,3,4 on it. The probability that a 1 and a 4 are spun are equal
a) What is the probability that a 4 is landed on?
b) If the spinner is spun 500 times how many times do we expect it to land on a 2 ?

PROBABILITY TREE DIAGRAMS Probability

Key Concepts

Independent events are events which do not affect one another.

Dependent events affect one another's probabilities. This is also known as conditional probability.

MathsWatch

57,151,175

There are red and blue counters in a bag.
The probability that a red counter is chosen is $\frac{2}{9}$.
A counter is chosen and replaced, then a second counter is chosen.
Draw a tree diagram and calculate the probability that two counters of the same colour are chosen.

Prob of two reds:

$$
\frac{2}{9} \times \frac{2}{9}=\frac{4}{81}
$$

Prob of two blues :

$$
\frac{7}{9} \times \frac{7}{9}=\frac{49}{81}
$$

Prob of same colours:

$$
\frac{4}{81}+\frac{49}{81}=\frac{53}{81}
$$

Examples

There are red and blue counters in a bag.
The probability that a red counter is chosen is $\frac{2}{9}$.
A counter is chosen and not replaced, then a second counter is chosen.
Draw a tree diagram and calculate the probability that two counters of the same colour are chosen.

Prob of same colours:

$$
\frac{2}{72}+\frac{42}{72}=\frac{44}{72}
$$

1) There are blue and green pens in a drawer There are 4 blues and 7 greens.
A pen is chosen and then replaced, then a second pen is chosen.
Draw a tree diagram to show this information and calculate the probability that pens of different colours are chosen.
2) There are blue and green pens in a drawer.

There are 4 blues and 7 greens.
A pen is chosen and not replaced, then a second pen is chosen.
Draw a tree diagram to show this information and calculate the probability that pens of different colours are chosen.

TWO WAY TABLES AND PROBABILITY TABLES Probability

Key Concepts

Two way tables are used to tabulate a number of pieces of information.

Probabilities can be formulated easily from two way tables.

Probabilities can be written as a fraction, decimal or a percentage however we often work with fractions. You do not need to simplify your fractions in probabilities.

Estimating the number of times an event will occur

Probability \times no. of trials

Examples

There are only red counters, blue counters, white counters and black counters in a bag.

Colour	Red	Blue	Black	White
No. of counters	9	$3 x$	$x-5$	$2 x$

A counter is chosen at random, the probability it is red is $\frac{9}{100}$. Work out the probability is black.

$$
\begin{aligned}
9+3 x+x-5+2 x & =100 \\
6 x+4 & =100 \\
x & =16
\end{aligned}
$$

Number of black counters $=16-5$
= 11
Probability of choosing black $=\frac{11}{100}$

80 children went on a school trip. They went to London or to York.
23 boys and 19 girls went to London. 14 boys went to York.

	London	York	Total
Girls	19	$\mathbf{2 4}$	$\mathbf{4 3}$
Boys	23	14	$\mathbf{3 7}$
Total	$\mathbf{4 2}$	$\mathbf{3 8}$	80

What is the probability that a person is chosen that went to London? $\frac{42}{80}$
If a girl is chosen, what is the probability that she went to York? $\frac{24}{38}$

Maths

61

Key Words Two way table

Probability
Fraction
Outcomes
Frequency

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Prob	0.37	$2 x$	x

1a) Calculate the probability of choosing a 2 or a 3.
b) Estimate the number of times a 2 will be chosen
if the experiment is repeated 300 times.

2a) Complete the two way table:

	Year Group			Total
	9	10	11	
Boys			125	407
Girls		123		
Total	303	256		831

b) What is the probability that a Y10 is chosen, given that they are a girl .

