DIRECT AND INVERSE PROPORTION ON GRAPHS Ratio and Proportion

Key Concepts

Variables are directly proportional when the ratio is constant between the quantities.

Variables are inversely proportional when one quantity increases in proportion to the other decreasing.

Direct and inverse proportion can also be represented on graphs.

199

y is directly proportional to x

y is inversely proportional to x

y is inversely proportional to x^{2}

Match the correct graph
to each statement:

DIRECT AND INVERSE PROPORTION USING ALGEBRA Ratio and Proportion

Key Concepts

Variables are directly proportional when the ratio is constant between the quantities.

Variables are inversely proportional when one quantity increases in proportion to the other decreasing.
α is the symbol we use to show that one variable is in proportion to another.

Direct proportion: $\boldsymbol{y} \propto \boldsymbol{x}$
Inverse proportion: $\quad y \propto \frac{1}{x}$

Direct proportion:

g is directly proportional to the square root of h When $g=18, h=16$
Find the possible values of h when $g=2$

$$
\begin{array}{cl}
g \propto \sqrt{h} & g=4.5 \sqrt{h} \\
g=k \sqrt{h} & \text { When } g=2 \\
18=k \sqrt{16} & 2=4.5 \sqrt{h} \\
18=4 k & \frac{2}{4.5}=\sqrt{h} \\
4.5=k & \left(\frac{4}{9}\right)^{2}=h \\
g=4.5 \sqrt{h} & \frac{16}{81}=h
\end{array}
$$

Examples

Inverse proportion:

The time taken, t , for passengers to be checked-in is inversely proportional to the square of the number of staff, s, working.
It takes 30 minutes passengers to be checked-in when 10 staff are working. How many staff are needed for 120 minutes?

$$
\begin{array}{cc}
t \propto \frac{1}{s^{2}} & t=\frac{3000}{s^{2}} \\
t=\frac{k}{s^{2}} & 120=\frac{3000}{s^{2}} \\
30=\frac{k}{10^{2}} & s^{2}=\frac{3000}{120} \\
3000=k & s^{2}=25 \\
t=\frac{3000}{s^{2}} & s=\sqrt{25} \\
& s=5
\end{array}
$$

MathsWatch

199

1) e is directly proportional to f When $e=3, f=36$
Find the value of f when $e=4$
2) x is inversely proportional to the square root of y.
When $x=12, y=9$
Find the value of x when $y=81$

$$
t=x(乙 \quad 8 t=f \text { (} \tau \text { S SyJMSN } \forall
$$

DIRECT AND INVERSE PROPORTION Ratio and Proportion

Key Concepts

Variables are directly proportional when the ratio is constant between the quantities.

Variables are inversely proportional when one quantity increases in proportion to the other decreasing.

Examples

Direct proportion:

Value of A	32	P	56	20	72
Value of B	20	30	35	R	45

Ratio constant: $20 \div 32=\frac{5}{8}$
From A to B we will multiply by $\frac{5}{8}$.
From B to A we will divide by $\frac{5}{8}$.

$$
P=30 \div \frac{5}{8}=48 \quad R=20 \times \frac{5}{8}=12.5
$$

Inverse proportion:

Key Words
Direct
Inverse
Proportion Divide
Multiply
Constant

Complete each table:

1) Direct proportion

Value of A	5	P	22
Value of B	9	28.8	Q

2) Inverse proportion

Value of A	4	P	18
Value of B	9	3	Q

$$
\tau=0^{\prime} て I=d(Z 9 \cdot 6 \varepsilon=0 ’ 9 I=d(\tau \text { SyヨMSNV }
$$

RATIO AND DIRECT PROPORTION Ratio and Proportion

Key Concepts

To calculate the value for a single item we can use the unitary method.

When working with best value in monetary terms we use:
Price per unit $=\frac{\text { price }}{\text { quantity }}$
In recipe terms we use:
Weight per unit
$=\frac{\text { weight }}{\text { quantity }}$

If 20 apples weigh 600 g . How much would 28 apples weigh?
$600 \div 20=30 \mathrm{~g} \quad$ weight of 1 apple
$28 \times 30=840 \mathrm{~g}$

Box A has 8 fish fingers costing $£ 1.40$.
Box B has 20 fish fingers costing $£ 3.40$.
Which box is the better value?

$$
\begin{aligned}
A=\frac{£ 1.40}{8} & B=\frac{£ 3.40}{20} \\
=£ 0.175 & =£ 0.17
\end{aligned}
$$

Therefore Box B is better value as each fish finger costs less.

Examples

Ingredients for 10 Flapjacks
80 g rolled oats
60 g butter
$30 \mathrm{~m} /$ golden syrup
36 g light brown sugar

The recipe shows the ingredients needed to make 10 Flapjacks.
How much of each will be needed to make 25 flapjacks?

Method 1: Unitary

Method	
$80 \div 10=8$	$30 \div 10=3$
$8 \times 25=\mathbf{2 0 0 g}$	$3 \times 25=\mathbf{7 5 g}$
$60 \div 10=6$	$36 \div 10=3.6$
$6 \times 25=150 \mathrm{~g}$	$3.6 \times 25=\mathbf{9 0 g}$
Method $2: 5$ flapjacks	$30 \div 2=15$
$80 \div 2=40$	$15 \times 5=75 \mathrm{~g}$
$40 \times 5=\mathbf{2 0 0 g}$	
$60 \div 2=30$	$36 \div 2=18$
$30 \times 5=150 \mathrm{~g}$	$18 \times 5=90 \mathrm{~g}$

2) Packet A has 10 toilet rolls costing $£ 3.50$. Packet B has 12 toilet rolls costing $£ 3.60$. Which is better value for money?
3) If 15 oranges weigh 300 g . What will 25 oranges weigh?

